- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cornil, Jérôme (2)
-
Beljonne, David (1)
-
Choi, Wookjin (1)
-
Diao, Ying (1)
-
Diez Cabanes, Valentin (1)
-
Frisbie, C. Daniel (1)
-
Galangau, Olivier (1)
-
Kafle, Prapti (1)
-
Lemaur, Vincent (1)
-
Norel, Lucie (1)
-
Rigaut, Stéphane (1)
-
Rodriguez-Gonzalez, Sandra (1)
-
Seki, Shu (1)
-
Van Nguyen, Quyen (1)
-
Xie, Zuoti (1)
-
Zhang, Fengjiao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Fengjiao; Lemaur, Vincent; Choi, Wookjin; Kafle, Prapti; Seki, Shu; Cornil, Jérôme; Beljonne, David; Diao, Ying (, Nature Communications)Abstract Organic semiconductors are usually polycyclic aromatic hydrocarbons and their analogs containing heteroatom substitution. Bioinspired materials chemistry of organic electronics promises new charge transport mechanism and specific molecular recognition with biomolecules. We discover organic semiconductors from deoxyribonucleic acid topoisomerase inhibitors, featuring conjugated backbone decorated with hydrogen-bonding moieties distinct from common organic semiconductors. Using ellipticine as a model compound, we find that hydrogen bonds not only guide polymorph assembly, but are also critical to forming efficient charge transport pathways along π−conjugated planes when at a low dihedral angle by shortening the end-to-end distance of adjacent π planes. In the π−π stacking and hydrogen-bonding directions, the intrinsic, short-range hole mobilities reach as high as 6.5 cm2V−1s−1and 4.2 cm2V−1s−1measured by microwave conductivity, and the long-range apparent hole mobilities are up to 1.3 × 10–3cm2V−1s−1and 0.4 × 10–3cm2V−1s−1measured in field-effect transistors. We further demonstrate printed transistor devices and chemical sensors as potential applications.more » « less
An official website of the United States government
